Guiding strand passage: DNA-induced movement of the gyrase C-terminal domains defines an early step in the supercoiling cycle
نویسندگان
چکیده
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA in a strand passage mechanism. A double-stranded segment of DNA, the T-segment, is passed through the gap in a transiently cleaved G-segment by coordinated closing and opening of three protein interfaces in gyrase. T-segment capture is thought to be guided by the C-terminal domains of the GyrA subunit of gyrase that wrap DNA around their perimeter and cause a DNA-crossing with a positive handedness. We show here that the C-terminal domains are in a downward-facing orientation in the absence of DNA, but swing up and rotate away from the gyrase body when DNA binds. The upward movement of the C-terminal domains is an early event in the catalytic cycle of gyrase that is triggered by binding of a G-segment, and first contacts of the DNA with the C-terminal domains, and contributes to T-segment capture and subsequent strand passage.
منابع مشابه
DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism
The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed...
متن کاملDNA-induced narrowing of the gyrase N-gate coordinates T-segment capture and strand passage.
DNA gyrase introduces negative supercoils into DNA in an ATP-dependent reaction. DNA supercoiling is catalyzed by a strand-passage mechanism, in which a T-segment of DNA is passed through the gap in a transiently cleaved G-segment. Strand passage requires the coordinated closing and opening of three protein interfaces in gyrase, the N-gate, DNA-gate, and C-gate. We show here that DNA binding to...
متن کاملCrystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling
Reverse gyrase is an ATP-dependent topoisomerase that is unique to hyperthermophilic archaea and eubacteria. The only reverse gyrase structure determined to date has revealed the arrangement of the N-terminal helicase domain and the C-terminal topoisomerase domain that intimately cooperate to generate the unique function of positive DNA supercoiling. Although the structure has elicited hypothes...
متن کاملThe GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle
DNA gyrase catalyses the adenosine triphosphate-dependent introduction of negative supercoils into DNA. The enzyme binds a DNA-segment at the so-called DNA-gate and cleaves both DNA strands. DNA extending from the DNA-gate is bound at the perimeter of the cylindrical C-terminal domains (CTDs) of the GyrA subunit. The CTDs are believed to contribute to the wrapping of DNA around gyrase in a posi...
متن کاملReverse gyrase—recent advances and current mechanistic understanding of positive DNA supercoiling
Reverse gyrases are topoisomerases that introduce positive supercoils into DNA in an ATP-dependent reaction. They consist of a helicase domain and a topoisomerase domain that closely cooperate in catalysis. The mechanism of the functional cooperation of these domains has remained elusive. Recent studies have shown that the helicase domain is a nucleotide-regulated conformational switch that alt...
متن کامل